Algorithme du Crible d'Eratosthènes
Implémenté dans tous les langages de programmation
Le crible d'Eratosthènes est un algorithme simple créé par un mathématicien de l'antiquité grecque, pour trouver les nombres premiers jusqu'à un entier donné. L'algorithme est souvent utilisé pour comparer la syntaxe des langages de programmation et la vitesse des compilateurs, ou interpréteurs.
L'algorithme:
Construire une liste de tous les entiers supérieurs à 1 et inférieurs ou égal à n. Supprimer les multiples de tous les premiers inférieurs ou égal à la racine carrée de n, ensuite, les nombres qui restent sont premiers.
Les algorithmes ci-dessous calculent tous les nombres premiers, mais ils n'implémentent pas tous exactement l'algorithme d'Eratosthènes.
Ada Awk Basic Bash C C++ C# D Caml Eiffel Euphoria F# Forth Fortran Go Haskell Java JavaScript Julia Lisp Lua Nim Oberon OCaml Oz Pascal Perl PHP Prolog Python Rebol Rexx Ruby Rust Scala Scheme Scriptol Smalltalk Swift Tcl WLangage
Ada
procedure Eratosthenes(Result : out Integer) is size : constant := 8190; k, prime : Natural; count : Integer; type Ftype is array (0 .. Size) of Boolean; Flags : Ftype; begin for Iter in 1 .. 10 loop count := 0; for i in 0 .. size loop Flags (i) := True; end loop; for i in 0 .. size loop if Flags (i) then prime := i + i + 3; k := i + prime; while k <= size loop Flags (k) := False; k := k + prime; end loop; count := count + 1; end if; end loop; end loop; Result := count; end Eratosthenes;
Awk
BEGIN { top = 50; n = (ARGV[1] < 1) ? 1 : ARGV[1]; while (n--) { for(i=2; i <= top; flags[i++]=1); for (i=2; i <= top; i++) { if (flags[i]) { for (k = i + i; k <= top; k += i) { flags[k] = 0; } } } } exit; }
Basic
QuickBasic, manuel de référence pour Apple Macintosh, by Microsoft.
defint a-z size=50 dim flags(50) for i=2 to size flags(i)=-1 next for i=2 to sqr(size) if flags(i) then for k=i*i to size step i flags(k)=0 next end if next for i=0 to size if flags(i) then print i; next print
En Basic plus ancien:
1010 REM Quite BASIC Math Project 2000 CLS 2030 LET L = 50 2050 ARRAY N 2070 FOR I = 1 TO L 2080 LET N[I] = I 2090 NEXT I 2110 LET P = 2 2120 PRINT P 2140 FOR I = P TO L STEP P 2150 LET N[I] = 0 2160 NEXT I 2180 LET P = P + 1 2190 IF P = L THEN END 2200 IF N[P] <> 0 THEN GOTO 2120 ELSE GOTO 2180
Bash
#!/bin/bash # Sieve of Eratosthenes from the bash scripting guide UPPER_LIMIT=$1 let SPLIT=UPPER_LIMIT/2 Primes=( '' $(seq $UPPER_LIMIT) ) i=1 until (( ( i += 1 ) > SPLIT )) do if [[ -n $Primes[i] ]] then t=$i until (( ( t += i ) > UPPER_LIMIT )) do Primes[t]= done fi done echo ${Primes[*]} exit 0
C
/* Sieve Of Erathosthenes by Denis Sureau */ #include <stdlib.h>#include <stdio.h> void eratosthenes(int top){ int all[10000]; int idx = 0; int prime = 3; int x, j; printf("1 "); while(prime <= top){ for(x = 0; x < top; x++){ if(all[x] == prime) goto skip; } printf("%d ", prime); j = prime; while(j <= (top / prime)) { all[idx++] = prime * j; j += 1; } skip: prime+=2; } puts(""); return; } int main(int argc, char **argv) { if(argc == 2) eratosthenes(atoi(argv[1])); else eratosthenes(50); return 0; }
Une autre version sans goto proposée par un utilisateur:
#include <stdio.h>
#include <stdlib.h>
/* Sieve by Baavgai */
void sieve(int size) {
int i,j;
char *sieve = (char *) calloc(size, 1);
for (i=2; i*i <= size; i++) {
if (!sieve[i]) {
for(j = i+i; j < size; j+=i) { sieve[j] = 1; }
}
}
for (i=2; i<size; i++) {
if (!sieve[i]) { printf("%d ", i); }
}
printf("\n");
free(sieve);
}
int main() {
sieve(100);
return 0;
}
C++
/* Sieve Of Erathosthenes by Denis Sureau */ #include <stdlib.h>#include <stdio.h> #include <iostream> #include <vector> void eratosthenes(int top) { std::vector <int> all = { top }; int idx = 0; std::cout << "1 "; for(int prime = 3; prime <= top; prime += 2) { bool flag = false; for(int x = 0; x < top; x++) { if(all[x] == prime) { flag = true; break; } } if(flag == false) { std::cout << prime << " "; int j = prime; while(j <= (top / prime)) { all[idx++] = prime * j; j += 1; } } } std::cout << std::endl; return; } int main(int argc, char **argv) { if(argc == 2) eratosthenes(atoi(argv[1])); else eratosthenes(50); return 0; }
C# (C Sharp)
using System; class App { public static int Main(String[] args) { int num; bool[] flags = new bool[51]; long i, k; int count = 0; num = System.Convert.ToInt32(args[0]); if(num < 1) num = 1; while(num-- > 0) { count = 0; for(i = 2; i <= 50; i++) { flags[i] = true; } for(i = 2; i <= 50; i++) { if(flags[i]) { for(k = i + i; k <= 50; k += i) { flags[k] = false; } count++; } } } Console.WriteLine("Count: " + count.ToString()); return(0); } }
D
import std.stdio; bool[8191] flags; int main() { int i, count, prime, k, iter; writeln("10 iterations"); for (iter = 1; iter <= 10; iter++) { count = 0; flags[] = 1; for (i = 0; i < flags.length; i++) { if (flags[i]) { prime = i + i + 3; k = i + prime; while (k < flags.length) { flags[k] = 0; k += prime; } count += 1; } } } writefln("%d primes", count); return 0; }
Source: D language Documentation.
Eiffel
class FIBONACCI feature fib (k: INTEGER): INTEGER is require pre_fib: k >= 0 do if k = 0 then Result := 0 else if k = 1 then Result := 1 else Result := fib (k-2) + fib (k-1) end end;
Euphoria
-- Sieve Of Erathosthenes by Derek Parnell -- Language: Euphoria v3.1.1 (www.rapideuphoria.com) include get.e procedure eratosthenes(integer target) sequence sieve integer next_prime integer limit sieve = repeat(0, target) limit = floor(power(target, 0.5)) sieve[1] = 1 next_prime = 2 while next_prime <= target and next_prime != 0 do if next_prime <= limit then for i = next_prime + next_prime to target by next_prime do sieve[i] = 1 end for end if printf(1, "%d ", next_prime) next_prime = find_from(0, sieve, next_prime+1) end while return end procedure procedure main(sequence argv) integer n n = 50 if length(argv) >= 3 then argv = value(argv[3]) n = argv[2] end if eratosthenes(n) end procedure main( command_line() )
F# (F Sharp)
let is_prime n = let max = int_of_float (Math.Sqrt( float_of_int n )) not ({ 2 .. max } |> Seq.filter ( fun d -> n%d = 0) |> Seq.nonempty) let primes = [0 .. top] |> List.filter is_prime
Forth
7919 2/ constant maxp : primes ( -- n ) here maxp 1 FILL 1 ( count, including 2 ) maxp 0 DO I here + C@ IF I 2* 3 + ( dup .) DUP I + ( prime current ) begin DUP maxp U< while 0 over here + C! over + repeat 2drop 1+ then loop ; primes . \ 1000
Fortran
* Sieve of Eratosthenes by Chuck Bouldin top = 50 logical*2 flags(top) integer*2 i,j,k,count,iter,prime n = long(362) do 92 iter = 1,10 count=0 i=0 do 10 i = 1,top 10 flags(i) = .true. do 91 i = 1,top if (.not. flags(i)) go to 91 prime = i + i + 3 count = count + 1 k = i + prime if (k .gt. top) go to 91 do 60 j = k, top, prime 60 flags(j) = .false. 91 continue 92 continue write (9,*) count," primes in ",(long(362)-n)/60.0," seconds " pause end
Go
(Selon la documentation du language)
func Generate(ch chan<- int) { for i := 2; ; i++ { ch <- i } } func Filter(in <-chan int, out chan<- int, prime int) { for { i := <-in // Receive value from 'in'. if i%prime != 0 { out <- i } } } func main() { ch := make(chan in go Generate(ch) for i := 0; i < 10; i++ { prime := <-ch fmt.Println(prime) ch1 := make(chan int) go Filter(ch, ch1, prime) ch = ch1 } }
Haskell
primes = sieve [ 2.. ] where sieve (p:x) = p : sieve [ n | n <- x, n `mod` p > 0 ]
Java
public class Eratosthenes { public static void main(String[] args) { int N = Integer.parseInt(args[0]); boolean[] isPrime = new boolean[N + 1]; for (int i = 2; i <= N; i++) isPrime[i] = true; for (int i = 2; i*i <= N; i++) { if (isPrime[i]) { for (int j = i; i*j <= N; j++) isPrime[i*j] = false; } } int primes = 0; for (int i = 2; i <= N; i++) { if (isPrime[i]) System.out.println(" " + i); } } }
JavaScript
<script language="JavaScript"> /* Sieve Of Erathosthenes by Denis Sureau */ function Eratosthenes(element, top) { var all = new Uint8Array(new ArrayBuffer(top)); var idx = 0; var prime = 3; var x, j; element.innerHTML = "1 "; while(prime <= top) { var flag = true; for(x = 0; x < top; x++) { if(all[x] == prime) { flag = false; break; } } if(flag) { element.innerHTML += prime + " "; j = prime; while(j <= (top / prime)) { all[idx++] = prime * j; j += 1; } } prime += 2; } element.innerHTML += "<br>"; return; } </script> <div id="primediv" onclick="Eratosthenes(this, 50);"> Click to start... </div>
Julia
# Sieve of Erasthotenes in Julia # By Denis Sureau 14/2/2014 function eratosthenes(size) all=ones(Int32, size) println(1) println(2) idx = 1 prime = 3 while prime <= size if !in(prime, all) println(prime) idx += 1 j = prime while (j <= (size / prime)) all = [all, prime * j] j += 1 end end prime += 2 end println end eratosthenes(50)
Lisp
(define divides (m n) (= (mod n m) 0)) (define seq (m n) (if (> m n) `() (cons m (seq (+ 1 m) n)))) (define remove-multiples (n L) (if (null? L) `() (if (divides (n (car l)) (remove-multiples n (cdr L)) (cons (car L) (remove-multiples n (cdr L))))))
Lua
-- By Darren Kirby x = arg[1] y = math.floor(math.sqrt(x)) primes = {} set = {} for i=2,x do table.insert(set, i) end function isFactor(index, value) if math.mod(value, checkint) == 0 then table.remove(set, index) end end while set[1] <= y do table.insert(primes, set[1]) checkint = set[1] table.remove(set, 1) for i,v in ipairs(set) do isFactor(i,v) end end for key, value in primes do io.write(value .. " ") end for key, value in set do io.write(value .. " ") end print()
Nim
import math proc eratosthenes(n): auto = prime = newSeq[int8](n+1) prime[0] = 1; prime[1] = 1 for i in 0 .. int sqrt(float n): if prime[i] == 0: for j in countup(i*i, n, i): prime[j] = 1 discard eratosthenes(1000)
Source: Hookrace/Conversion d'une des nombreuses solutions en Python.
Oberon
MODULE Eratosthenes; (* Active Oberon Demo *) IMPORT Streams; CONST N = 50; Terminate = -1; VAR log: Streams.Stream; TYPE Sieve = POINTER TO SieveDesc; SieveDesc = RECORD (OBJECT) VAR prime, n: INTEGER; available: BOOLEAN; next: Sieve; PROCEDURE Set (i: INTEGER); BEGIN {EXCLUSIVE} PASSIVATE (~available); n := i; available := TRUE END Set; PROCEDURE Change; BEGIN {EXCLUSIVE} available := FALSE END Change; PROCEDURE & Init; BEGIN prime := 0; available := FALSE; next := NIL END Init; BEGIN {PARALLEL(2)} LOOP PASSIVATE (available); IF n = Terminate THEN IF next # NIL THEN next.Set (n) END; EXIT ELSE IF prime = 0 THEN log.Int(n); log.Ln; prime := n; NEW (next) ELSIF (n MOD prime) # 0 THEN next.Set (n) END; Change END END END SieveDesc; Gen = POINTER TO GenDesc; GenDesc = RECORD VAR s: Sieve; i: INTEGER; BEGIN {PARALLEL(2)} NEW (s); FOR i := 2 TO N-1 DO s.Set (i) END; s.Set (Terminate) END GenDesc; PROCEDURE Start*; VAR g: Gen; BEGIN NEW(log, "Eratosthenes", 70); NEW (g) END Start; END Eratosthenes. Eratosthenes.Start
Ocaml
(* (c) 2003 David Van Horn - Licensed under the Academic Free License version 2.0 *) open List type integer = Int of int let number_two = Int(2) let number_zero = Int(0) let is_less_than_two (Int n) = n < 2 let incr (Int n) = Int(n + 1) let decr (Int n) = Int(n - 1) let is_number_zero (Int n) = n = 0 let iota n = let rec loop curr counter = if is_less_than_two counter then [] else curr::(loop (incr curr) (decr counter)) in loop number_two n let sieve lst = let rec choose_pivot = function | [] -> [] | car::cdr when is_number_zero car -> car::(choose_pivot cdr) | car::cdr -> car::(choose_pivot (do_sieve car (decr car) cdr)) and do_sieve step current lst = match lst with | [] -> [] | car::cdr -> if is_number_zero current then number_zero::(do_sieve step (decr step) cdr) else car::(do_sieve step (decr current) cdr) in choose_pivot lst let is_prime n = match rev (sieve (iota n)) with x::_ -> not (is_number_zero x)
Oz
functor import System Application define Args N Flags Start Stop in [Args] = {Application.getArgs plain} N = {String.toInt Args} Start = 2 Top = 50 Flags = {BitArray.new Start Stop} for I in Start..Top do {BitArray.set Flags I} end for I in 1..N do for J in Start..Top do if {BitArray.test Flags J} then for K in J+J..Top;J do {BitArray.clear Flags K} end end end end {System.showInfo "Count: "#{BitArray.card Flags}} {Application.exit 0} end
Pascal
program Eratosthenes; const N=1000; var a:ARRAY[1..N] of boolean; i,j,m:word; begin for i:=1 TO N do a[i]:=TRUE; m:=trunc(sqrt(N)); for i:=2 to m do if a[i] then for j:=2 to N DIV i do a[i*j]:=FALSE; for i:=1 to N do if a[i] then write(i:4); end.
Perl
Contribution des utilisateurs. #!/usr/bin/perl use strict; use integer; my $count = 0; my $top = 50; my @flags = (0 .. $top); for my $i (2 .. int(sqrt($top)) + 1) { next unless defined $flags[$i]; for (my $k=$i+$i; $k <= $top; $k+=$i) { undef $flags[$k]; } } print "Here is the list of primes from 1 to $top:\n"; for my $j ( 1 .. $top) { print ("$j ") && $count++ if defined $flags[$j]; } print "\n"; print "Number of primes found: $count\n";Code source
PHP
<?php /* Sieve Of Erathosthenes by Denis Sureau */ function eratosthenes($n) { $all=array(); $prime=1; echo 1," ",2; $i=3; while($i<=$n) { if(!in_array($i,$all)) { echo " ",$i; $prime+=1; $j=$i; while($j<=($n/$i)) { array_push($all,$i*$j); $j+=1; } } $i+=2; } echo "\n"; return; } eratosthenes(50); ?>
Prolog
% Sieve of Eratosthene % Le Huitouze and Ridoux translated by DGS $ erathostenes :- freeze(L,prime(L)), list_of_ints(2,L). $ prime([X|L]) :- write(X), nl, freeze(L,sieve(X,L,Canal)), freeze(Canal,prime(Canal)). $ sieve(X,[Nb|L],Canal) :- mod(Nb,X,0), !, freeze(L,sieve(X,L,Canal)). $ sieve(X,[Nb|L],[Nb|Canal2]) :- freeze(L,sieve(X,L,Canal2)). $ list_of_ints(X,[X|L]) :- plus(X,1,X1), list_of_ints(X1,L)..
Python 3
def eratosthenes(n):
all = []
prime = 1
print(1) print(2)
i = 3
while (i <= n):
if i not in all:
print(i, ",")
prime += 1
j = i
while (j <= (n / i)):
all.append(i * j)
j += 1
i += 2
print("\n")
eratosthenes(1000)
Contribution d'un utilisateur plus conforme à l'algorithme du crible d'Eratosthène:
# Sieve by Baavgai def eratosthenes(n):
sieve = [ True for i in range(n+1) ]
def markOff(pv):
for i in range(pv+pv, n+1, pv):
sieve[i] = False
markOff(2)
for i in range(3, n+1):
if sieve[i]:
markOff(i)
return [ i for i in range(1, n+1) if sieve[i] ]
print(eratosthenes(100))
Rebol
ctr: to-integer to-string system/script/args ctr: either ctr < 1 [ 1 ] [ ctr ] top: 50 while [ ctr > 0 ] [ flags: copy [] for i 0 top 1 [ insert tail flags 1 ] flags: head flags for i 2 top 1 [ p: pick flags i if p = 1 [ k: i + i while [ k <= top ] [ change at flags k 0 k: k + i ] ] ] ctr: ctr - 1 ]
Rexx
limit = 50 isPrime. = 1 do n=2 to limit if isPrime.n then call anotherPrime n end exit 0 anotherPrime arg prime say right( prime, length( limit ) ) do multiple=prime by prime to limit isPrime.multiple = 0 end return
Ruby
# sieve of Eratosthenes from the ruby distro top = Integer(ARGV.shift || 100) sieve = [] for i in 2 .. top sieve[i] = i end for i in 2 .. Math.sqrt(top) next unless sieve[i] (i*i).step(top, i) do |j| sieve[j] = nil end end puts sieve.compact.join " "
Rust
fn sieve(bound: uint) -> ~[uint] { let mut primes = std::vec::from_fn(bound+1, |num| num == 2 || num & 1 != 0); for num in count(3u, 2).filter(|&num| primes[num]).take_while(|&num| num * num <= bound) { for j in range_step_inclusive(num*num, bound, num) { primes[j] = false; } } primes.move_iter().enumerate().skip(2).filter_map(|(i, p)| if p {Some(i)} else {None}).collect::<~[uint]>() } fn main() { assert_eq!(sieve(20), ~[2, 3, 5, 7, 11, 13, 17, 19]); }
Source: jsanders sur Github.
Scala
object Sieve { def ints(n: Int): Stream[Int] = Stream.cons(n, ints(n+1)) def primes(nums: Stream[Int]): Stream[Int] = Stream.cons(nums.head, primes ((nums tail) filter (x => x % nums.head != 0)) ) def main(args: Array[String]): Unit = { val n = Integer.parseInt(args(0)) System.out.println(primes(ints(2)) take n toList) } }
Scheme
(define (sieve-of-eratosthenes n) (let ((table (make-bit-string (- n 2) #t))) (define (prime? k) (bit-string-ref table (- k 2))) (define (not-prime! k) (bit-string-clear! table (- k 2))) (loop ((for k (in-range (from 2) (up-to n)))) (if (prime? k) (loop ((for i (in-range (from (* 2 k)) (up-to n) (by k)))) (not-prime! i)))) (collect-list (for k (in-range (from 2) (up-to n))) (if (prime? k)) k)))
Scriptol
# Sieve of Eratosthènes par Denis Sureau array sieve(int top) array all = [ top ] array somelist = [1] int idx = 0 for int prime in 3 -- top step 2 if prime in all ? continue somelist.push(prime) int j = prime while j <= (top / prime) all[idx] = prime * j idx + 1 j + 1 /while /for return somelist array a = sieve(1000) print a
Smalltalk
" Sieve of Erastosthenes in Smalltalk by Rob Hoelz Object subclass: #Sieve instanceVariableNames: 'primes' classVariableNames: '' poolDictionaries: '' category: nil. !Sieve class methodsFor: 'instance creation'! new: limit |r| r := super new. r init: limit. ^r ! ! !Sieve methodsFor: 'instance initialization'! init: limit primes := Array new: limit. primes at: 1 put: 0. 2 to: limit do: [:x| primes at: x put: 1] ! ! !Sieve methodsFor: 'prime generation'! generate |currPrime| currPrime := 2. [((currPrime * currPrime) <= (primes size))] whileTrue: [self removeMultiples: currPrime. currPrime := self nextPrime: currPrime] ! ! !Sieve methodsFor: 'printing'! printPrimes |index| index := 1. primes do: [:x| (x = 1) ifTrue: [Transcript show: (index displayString). Transcript show: ' ']. index := index + 1]. Transcript cr ! ! !Sieve methodsFor: 'private'! removeMultiples: currPrime |index| index := currPrime * 2. [(index <= (primes size))] whileTrue: [primes at: index put: 0. index := index + currPrime] ! nextPrime: currPrime |index| index := currPrime + 1. [(index <= (primes size))] whileTrue: [(1 = (primes at: index)) ifTrue: [^index]. index := index + 1]. ^(primes size) ! ! |argv limit s| argv := Smalltalk arguments. limit := (argv at: 1) asInteger. s := Sieve new: limit. s generate. s printPrimes.
Swift
func eratosthenes(n: Int)-> sieveResult{ var sieve = [Int] 0 ..< n var i = 1 let top = Int(sqrt(Double(n))) return sieveResult { while ++i < n { if sieve[i] != 0 { if i <= top { for notPrime in stride(from: i*i, to: n, by: i) { sieve[notPrime] = 0 } } return i } } return nil } }
Tcl
# By Sam Shen set n 50 narray create sieve $n sieve status sieve map { if ![] { inc = @0 + 2; for (i = @0 + inc; i < @#0; i += inc) { [i] = 1; } } } sieve map { if ![] { printf("%4d ", @0 + 2); } post { printf("\n"); } }
WLangage
Proposé par l'auteur:
(c) 2010 Jacques De Schryver
Licensed under the Academic Free License. i, j, k sont entiers = 1 tantque i <= 1000 i += (1 + (i>2)) k = 1 POUR j = 2 A Racine(i) SI i modulo j = 0 ALORS k = 0 FIN SI k = 1 ALORS Description_de_l_erreur += i + " ; " FIN
Voir aussi
- Le programme "Hello world!" (Salut le monde!) dans tous les langages de programmation.
- Histoire et évolution des langages pour ordinateur.
Les programmes sont du domaine public ou écrit par moi-même ou contribués par les utilisateurs.