Programme des nombres de Fibonacci
par Scriptol.frLe mathématicien Leonardo Fibonacci à posé le problème suivant dans son traité Liber Abaci:
"Combien de paires de lapins auront été produites en une année, en partant d'une seule paire, si chaque mois, chaque paire procrée une nouvelle paire qui deviendra capable de se reproduire à partir du
mois suivant?"
La réponse est donnée ci-dessous par un algorithme dans les langages de programmation les plus populaires et les nouveaux langages...
Ada Algol Asp Awk Basic Boo C C++ C# Caml Cobol CoffeeScript Dart Eiffel Erlang F# Forth Fortran Go Haskell Java Julia JavaScript Lisp Lua Oberon Objective C OCaml Oz Pascal Perl PHP Prolog Python Rebol Rexx Ruby Rust Scala Scheme Scriptol Smalltalk Swift Tcl TypeScript WebAssembly
Ada
Récursiffunction fib(n : integer) return integer is begin if n < 2 then return n; else return fib(n-1) + fib(n-2); end if; end fib;Itératif
function fib(n : integer) return integer is first : integer := 0; second : integer := 1; tmp : integer; begin for i in 1..n loop tmp := first + second; first := second; second := tmp; end loop; return first; end fib;
Algol 68
PROC print fib = (INT n) VOID : BEGIN INT a := 0; INT b := 1; FOR i TO n DO print((whole(i, 0), " => ", whole(b, 0), new line)); INT c = a + b; a := b; b := c OD END; print fib(10)
Asp
Récursiffunction fibo(byval i) if (i = 0 or i = 1) then fibo = i else fibo = fibo(i - 1) + fibo(i - 2) end If end function <% for num = 1 to n = fibo(num) %>Itératif
<table> <% dim a = 1 dim b = 1 dim num dim d for num = 1 to 12 d = a + b a = b - 1 b = d response.Write("<tr><td> " & num & "</td><td>" & a & "</td></tr>") next %> </table>
Awk
function fib(n) { if(n < 2) return(n); return(fib(n-2) + fib(n-1)); } BEGIN { printf("%d\n", fib(10)); exit; }
Basic
x = 1 y = 1 n = 100 FOR x = 1 to n z = x + y x = y y = z PRINT z + 1 NEXT x
C
Récursifint fib(int n){ if (n < 2) return n; else return fib(n-1) + fib(n-2); } printf("%d\n", fib(10));Itératif
int fib(int n) { int first = 0, second = 1; int tmp; while (n--) { tmp = first+second; first = second; second = tmp; } return first; }
C++
Récursifint fib(int n) { if (n < 2) return n; else return fib(n-1) + fib(n-2); } cout << fib(10) << endl;Itératif
int fibonacci(int n) { int u = 0; int v = 1; int i, t; for(i = 2; i <= n; i++) { t = u + v; u = v; v = t; } return v; }
C#
Récursifusing System; class App { public static int fibo(int n) { return (n < 2) ? n : fibo(n-2) + fibo(n-1); } public static int Main(String[] args) { int limit; int f; limit = System.Convert.ToInt32(args[0]); if(limit < 1) limit = 1; f = fibo(limit); Console.WriteLine(f.ToString()+"\n"); return(0); } }Itératif
public class Fibonacci { public static void Main() { int oldnum = 1; int currnum = 1; int nextNumber; System.Console.Write(currnum + " "); while (currnum < 50) { System.Console.Write(currnum + " "); nextNumber = currnum + oldnum; oldnum = currnum; currnum = nextNumber; } } }
Cobol
IDENTIFICATION DIVISION. PROGRAM-ID. FIBONACCI. ENVIRONMENT DIVISION. DATA DIVISION. WORKING-STORAGE SECTION. 77 N PIC 9(18). 77 N1 PIC Z(18). 77 M PIC 9(18) VALUE 1. 77 O PIC 9(18). 77 I PIC 9(4) VALUE 1. 77 Q PIC X. PROCEDURE DIVISION. PARA-A. DISPLAY ( 1 , 1 ) ERASE. DISPLAY ( 2 , 1 ) "FIBONACCI NUMBERS FROM 1 TO 100 ARE:". MOVE 0 TO N. DISPLAY " ". DISPLAY 0. DISPLAY 1. MOVE 0 TO O. PARA-B. COMPUTE N = O + M. MOVE N TO N1. MOVE M TO O. MOVE N TO M. DISPLAY N1. ADD 1 TO I. IF I = 21 DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE." ACCEPT Q. IF I = 41 DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE." ACCEPT Q. IF I = 61 DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE." ACCEPT Q. IF I = 81 DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE." ACCEPT Q IF I = 99 GO TO STOP-PARA ELSE GO TO PARA-B. STOP-PARA. DISPLAY " ". STOP RUN.
CoffeeScript
fibo = (n) -> if n is 0 or n is 1 return n fibo(n-1)+ fibo(n-2) for i in [1..16] console.log fibo(i)
Dart
int fibo(int i) { if (i < 2) return i; return fibo(i - 2) + fibo(i - 1); }
Eiffel
Récursifclass FIBONACCI feature fib (k: INTEGER): INTEGER is -- Fibonnaci numbers require pre_fib: k >= 0 do if k = 0 then Result := 0 else if k = 1 then Result := 1 else Result := fib (k-2) + fib (k-1) end end; -- fibItératif
fibiter (k: INTEGER): INTEGER is -- Fibonacci require pre_fib: k > 0 local j, p, c, n: INTEGER do from p := 0; c := 1; j := 1 until j = k loop n := p + c; p := c; c := n; j := j + 1 end; Result := c end; -- fib1
Erlang
-module(fibo). -export([main/1]). main() -> main(['1']). main([Arg]) -> Num = list_to_integer(atom_to_list(Arg)), io:fwrite("~w\n", [fibo(Num)]), halt(0). fibo(N) when N < 2 -> 1; fibo(N) -> fibo(N-2) + fibo(N-1).
F# (F Sharp)
let rec fibo x = match x with 0 -> 1 | 1 -> 1 | n -> fibo(x - 1) + fibo(x - 2);; fibo 10;;
Forth
\ lit NUM à partir du dernier argument en ligne de commande 0. argc @ 1- arg >number 2drop drop constant NUM \ compute fibonacci numbers : fib Récursif dup 2 < if drop 1 else dup 2 - fib swap 1 - fib + then ; NUM fib 1 u.r cr byeUne version très courte:
\ Nombres de Fibonacci par Bill Spight : FIBO ( n -- n1 n0) \ n >= 0, n0 = Fibo(n), n1 = Fibo(n-1) DUP 0= IF 1 SWAP ELSE 1- RECURSE TUCK + ENDIF ;
Fortran
PROGRAM F2A I=35; K=I CALL F(I) PRINT *,K,'th Fibonacci number is',I STOP END PROGRAM C C Routine F(I) qui calcule le I ième nombre de Fibonacci C SUBROUTINE F(I) DIMENSION A(I+1) A(1)=1; A(2)=1 DO1J=3,I+1 A(J)=A(J-1)+A(J-2) 1 CONTINUE I=A(I+1) RETURN END SUBROUTINE
Go
package main import( "fmt" "math" ) func fibo(n int) int { if n < 2 { return n } return fibo(n-2) + fibo(n-1) }
Haskell
module Main where import System.Environment fibo = 1 : 1 : zipWith (+) fibo (tail fibo) main = do args <- getArgs print (fibo !! (read(args!!0)-1))
Java
public class fibo { public static void main(String args[]) { int N = Integer.parseInt(args[0]); System.out.println(fib(N)); } public static int fib(int n) { if (n < 2) return(n); return( fib(n-2) + fib(n-1) ); } }
JavaScript
function fibo(n) { if (n < 2) return n return fibo(n-2) + fibo(n-1) } for(var i = 1; i < x ; i++) { document.write(i + " = " + fibo(i) + "<br>") }
Julia
Récursif
fibo(n) = n < 2 ? n : fibo(n-1) + fibo(n-2)
Itératif
function fibo(n) x,y = (0,1) for i = 1:n x,y = (y, x+y) end return x end for n=1:10 println(fibo(n)) end
Lisp
(defun fibo (x) " Calcule le nombre de fibonacci pour x " (if (<= x 2) 1 (+ (fibo (- x 2))(fibo (1- x))))) (loop for i from 1 to x do (print (fibo i)))
Lua
function fibo(n) if (n < 2) then return(1) end return( fibo(n-2) + fibo(n-1) ) end N = tonumber((arg and arg[1])) or 1 write(fibo(N), "\n")
Oberon
MODULE fibonacci; (* n premiers nombres de Fibonacci *) CONST n=151; VAR Fibs: ARRAY n+1 OF INTEGER; i,j : INTEGER; BEGIN j:=0; Fibs[0]:=0; Fibs[1]:=1; i:=2; WHILE i <= n DO Fibs[i]:= Fibs[i-2] + Fibs[i-1]; i:=i+1; END; i:=0; WHILE i <= n DO Write(Fibs[i]); i:=i+1; END; END fibonacci.
Objective C
int i, a = 1, b = 0; int top = 50; for(i = 2; i < top; i++) { fibo = a + b; a = b; b = fibo; printf("fibo(%d) %d\n", i, fibo); }
Ocaml
let rec fib n = if n < 2 then 1 else fib (n - 2) + fib (n - 1) let _ = let n = try int_of_string Sys.argv.(1) with Invalid_argument _ -> 1 in Printf.printf "%d\n" (fib n)
Oz
functor import System Application define fun {Fib N} case N of 0 then 1 [] 1 then 1 else {Fib N-2} + {Fib N-1} end end in local A in [A] = {Application.getArgs plain} {System.printInfo {Fib {String.toInt A}}} end {Application.exit 0} end
Pascal
Récursifprogram fibo; var result : longint; num,i, error: integer; strnum: string; function fib(n : integer) : longint; begin if n <= 2 then fib := 1 else fib := fib(n-2) + fib(n-1); end; begin if ParamCount = 0 then begin writeln('Enter integer:'); readln(strnum); val(strnum,num,error); end else begin val (ParamStr(1), num, error); end; for i := 1 to num do begin result:= fib(i); writeln(i, ' : ', result); end; end.Code source
Perl
Itératif utilisant bigint#! /usr/bin/perl use bigint; my ($a, $b) = (0, 1); for (;;) { print "$a\n"; ($a, $b) = ($b, $a+$b); }Récursif
sub fibo; sub fibo {$_ [0] < 2 ? $_ [0] : fibo ($_ [0] - 1) + fibo ($_ [0] - 2)}Itératif
sub fibo { my ($n, $a, $b) = (shift, 0, 1); ($a, $b) = ($b, $a + $b) while $n-- > 0; $a; }
PHP
Récursif<?php function fibo($n) { return(($n < 2) ? 1 : fibo($n - 1) + fibo($n - 2)); } $n = ($argc == 2) ? $argv[1] : 1; $r = fibo($n); print "$r\n"; ?>Itératif
function fibonacci($length) { for( $l = array(1,1), $i = 2, $x = 0; $i < $length; $i++ ) { $l[] = $l[$x++] + $l[$x]; } return $l; } for{ $x=0; $x< $fibmax; $x++) echo "fib(" , $x , ") ", fibonacci($x), "\n"
Prolog
Récursiffibo(N, 1) :-, N<2, !. fibo(N, R) :- N1 is N-1, N2 is N-2, fibo(N1, R1),fibo(N2, R2), R is R1 + R2.
Python
Récursifimport sys def fib(n): if n < 2: return n else: return fib(n - 1) + fib(n - 2) def main(): limit = int(sys.argv[1]) print(fib(limit)) main()Avec générateur
def fib(): a, b = 0, 1 while True: yield a a, b = b, a + b
Rebol
Fib: func [N] [ return either N < 2 [ n ] [ (Fib N - 2) + (Fib N - 1) ] ] NUM: to-integer to-string system/script/args NUM: either NUM < 1 [ 1 ] [ NUM ] R: Fib NUM write %output.rebol rejoin [ R ]
Rexx
parse arg n If n < 1 Then Do n = 1 End R = fib(n) say R exit fib: Procedure parse arg n if n < 2 return n return fib(n-2) + fib(n-1)
Ruby
Récursifdef fibo(n) return n if n <= 1 return fibo(n-1) + fibo(n-2) end puts fibo(16)Itératif
def fib(num) i, j = 0, 1 while i <= num yield i i, j = j, i + j end end fib(10) {|i| puts i}
Rust
fn fibo(n: int) -> int { if (n <= 1) { ret n; } else { ret fibo(n - 1) + fibo(n - 2); } } print(fmt!("%d ", fibo(10)));
Scala
Récursifobject Fibonacci with Application { def fibo(n: Int): Int = if (n < 2) n else fibo(n - 1) + fibo(n - 2); Console.println("fib("+ x +") = " + fib(x)); };Itératif
object Fibonacci with Application { def fibo(n: Int): Int = if (n < 2) 1 else { def iter(x: Int, prev: Int, result: Int): Int = if (x > n) result else iter(x + 1, result, prev + result); iter(3, 1, 2) }; Console.println("fib("+ x +") = " + fib(x)); };
Scheme
Récursif(define fibo (lambda (x) (if (< x 2) x (+ (fibo (- x 1)) (fibo (- x 2))))))Itératif
(define (fibo x) (define (fibo-iter x a b) (if (= x 0) a (fibo-iter (- x 1) b (+ a b)))) (fibo-iter x 0 1))Display
(define (fibo-run a b) (display a) (newline) (fibo-run b (+ a b))) (define fibo-run-all (fibo-run 0 1)))
Scriptol
Récursif# Fonction de Fibonacci récursive constant int fmax = 16 int fib(int n) if n <= 1 return n return fib(n - 1) + fib(n - 2) for int i in 1..fmax // boucle sur un intervalle print "fib($i)= " , fib(i) /forItératif
int fibonacci(int n)
int u = 0
int v = 1
int t
for int i in 2 .. n
t = u + v
u = v
v = t
/for
return v
for int x in 1..fibmax echo "fib(" , x , ") ", fibonacci(x), "\n"
Smalltalk
^self <= 2 ifTrue: [1] ifFalse: [(self - 1) fibonacci + (self - 2) fibonacci]
Swift
func fib(n: Int) -> Int { if n <= 1 { return n } return (fib(n - 1) + fib(n - 2)) } for x in 10 { print(fib(x)) }
Tcl
proc fib {n} { if {$n < 2} { return $n } else { return [expr {[fib [expr {$n-2}]] + [fib [expr {$n-1}]]}] } } set N [lindex $argv 0] if {$N < 1} { set N 1 } puts [fib $N]
TypeScript
function fibo(n : number) : number { if (n < 2) return n return fibo(n-2) + fibo(n-1) }
WebAssembly
(module (export "fib" (func $fib)) (func $fib (param $n i32) (result i32) (if (i32.lt_s (get_local $n)(i32.const 2)) (return (i32.const 1) ) ) (return (i32.add (call $fib (i32.sub (get_local $n)(i32.const 2))) (call $fib (i32.sub (get_local $n)(i32.const 1))) ) ) ) )
Voir aussi
- Le programme "Salut le Monde' dans tous les langages de programmation.
- Le crible d'Eratosthènes en tout langage de programmation.
- Histoire et évolution des langages informatique.
© 2006-2020 Scriptol.fr. Dernière mise à jour 3 janvier 2014.