Programme des nombres de Fibonacci
par Scriptol.frLe mathématicien Leonardo Fibonacci à posé le problème suivant dans son traité Liber Abaci:
"Combien de paires de lapins auront été produites en une année, en partant d'une seule paire, si chaque mois, chaque paire procrée une nouvelle paire qui deviendra capable de se reproduire à partir du
mois suivant?"
La réponse est donnée ci-dessous par un algorithme dans les langages de programmation les plus populaires et les nouveaux langages...
Ada Algol Asp Awk Basic Boo C C++ C# Caml Cobol CoffeeScript Dart Eiffel Erlang F# Forth Fortran Go Haskell Java Julia JavaScript Lisp Lua Oberon Objective C OCaml Oz Pascal Perl PHP Prolog Python Rebol Rexx Ruby Rust Scala Scheme Scriptol Smalltalk Swift Tcl TypeScript WebAssembly
Ada
Récursiffunction fib(n : integer) return integer is
begin
if n < 2 then
return n;
else
return fib(n-1) + fib(n-2);
end if;
end fib;
Itératif
function fib(n : integer) return integer is
first : integer := 0;
second : integer := 1;
tmp : integer;
begin
for i in 1..n loop
tmp := first + second;
first := second;
second := tmp;
end loop;
return first;
end fib;
Algol 68
PROC print fib = (INT n) VOID :
BEGIN
INT a := 0;
INT b := 1;
FOR i TO n DO
print((whole(i, 0), " => ", whole(b, 0), new line));
INT c = a + b;
a := b;
b := c
OD
END;
print fib(10)
Asp
Récursiffunction fibo(byval i)
if (i = 0 or i = 1) then
fibo = i
else
fibo = fibo(i - 1) + fibo(i - 2)
end If
end function
<% for num = 1 to n
= fibo(num)
%>
Itératif
<table>
<%
dim a = 1
dim b = 1
dim num
dim d
for num = 1 to 12
d = a + b
a = b - 1
b = d
response.Write("<tr><td> " & num & "</td><td>" & a & "</td></tr>")
next
%>
</table>
Awk
function fib(n)
{
if(n < 2) return(n);
return(fib(n-2) + fib(n-1));
}
BEGIN
{
printf("%d\n", fib(10));
exit;
}
Basic
x = 1 y = 1 n = 100 FOR x = 1 to n z = x + y x = y y = z PRINT z + 1 NEXT x
C
Récursifint fib(int n){
if (n < 2)
return n;
else
return fib(n-1) + fib(n-2);
}
printf("%d\n", fib(10));
Itératif
int fib(int n) {
int first = 0, second = 1;
int tmp;
while (n--) {
tmp = first+second;
first = second;
second = tmp;
}
return first;
}
C++
Récursifint fib(int n) {
if (n < 2)
return n;
else
return fib(n-1) + fib(n-2);
}
cout << fib(10) << endl;
Itératif
int fibonacci(int n) {
int u = 0;
int v = 1;
int i, t;
for(i = 2; i <= n; i++) {
t = u + v;
u = v;
v = t;
}
return v;
}
C#
Récursifusing System;
class App
{
public static int fibo(int n)
{
return (n < 2) ? n : fibo(n-2) + fibo(n-1);
}
public static int Main(String[] args)
{
int limit;
int f;
limit = System.Convert.ToInt32(args[0]);
if(limit < 1) limit = 1;
f = fibo(limit);
Console.WriteLine(f.ToString()+"\n");
return(0);
}
}
Itératif
public class Fibonacci
{
public static void Main()
{
int oldnum = 1;
int currnum = 1;
int nextNumber;
System.Console.Write(currnum + " ");
while (currnum < 50)
{
System.Console.Write(currnum + " ");
nextNumber = currnum + oldnum;
oldnum = currnum;
currnum = nextNumber;
}
}
}
Cobol
IDENTIFICATION DIVISION.
PROGRAM-ID. FIBONACCI.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 N PIC 9(18).
77 N1 PIC Z(18).
77 M PIC 9(18) VALUE 1.
77 O PIC 9(18).
77 I PIC 9(4) VALUE 1.
77 Q PIC X.
PROCEDURE DIVISION.
PARA-A.
DISPLAY ( 1 , 1 ) ERASE.
DISPLAY ( 2 , 1 ) "FIBONACCI NUMBERS FROM 1 TO 100 ARE:".
MOVE 0 TO N.
DISPLAY " ".
DISPLAY 0.
DISPLAY 1.
MOVE 0 TO O.
PARA-B.
COMPUTE N = O + M.
MOVE N TO N1.
MOVE M TO O.
MOVE N TO M.
DISPLAY N1.
ADD 1 TO I.
IF I = 21
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 41
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 61
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 81
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q
IF I = 99
GO TO STOP-PARA
ELSE
GO TO PARA-B.
STOP-PARA.
DISPLAY " ".
STOP RUN.
CoffeeScript
fibo = (n) ->
if n is 0 or n is 1 return n
fibo(n-1)+ fibo(n-2)
for i in [1..16]
console.log fibo(i)
Dart
int fibo(int i) {
if (i < 2) return i;
return fibo(i - 2) + fibo(i - 1);
}
Eiffel
Récursifclass FIBONACCI
feature
fib (k: INTEGER): INTEGER is
-- Fibonnaci numbers
require
pre_fib: k >= 0 do
if k = 0 then
Result := 0
else
if k = 1 then
Result := 1
else
Result := fib (k-2) + fib (k-1) end
end;
-- fib
Itératif
fibiter (k: INTEGER): INTEGER is
-- Fibonacci
require
pre_fib: k > 0
local
j, p, c, n: INTEGER
do from
p := 0;
c := 1;
j := 1
until
j = k
loop
n := p + c;
p := c;
c := n;
j := j + 1
end;
Result := c
end;
-- fib1
Erlang
-module(fibo).
-export([main/1]).
main() -> main(['1']).
main([Arg]) ->
Num = list_to_integer(atom_to_list(Arg)),
io:fwrite("~w\n", [fibo(Num)]),
halt(0).
fibo(N) when N < 2 -> 1;
fibo(N) -> fibo(N-2) + fibo(N-1).
F# (F Sharp)
let rec fibo x =
match x with
0 -> 1
| 1 -> 1
| n -> fibo(x - 1) + fibo(x - 2);;
fibo 10;;
Forth
\ lit NUM à partir du dernier argument en ligne de commande
0. argc @ 1- arg >number 2drop drop constant NUM
\ compute fibonacci numbers
: fib Récursif
dup 2 <
if
drop 1
else
dup
2 - fib
swap
1 - fib
+
then ;
NUM fib 1 u.r cr
bye
Une version très courte:
\ Nombres de Fibonacci par Bill Spight : FIBO ( n -- n1 n0) \ n >= 0, n0 = Fibo(n), n1 = Fibo(n-1) DUP 0= IF 1 SWAP ELSE 1- RECURSE TUCK + ENDIF ;
Fortran
PROGRAM F2A
I=35; K=I
CALL F(I)
PRINT *,K,'th Fibonacci number is',I
STOP
END PROGRAM
C
C Routine F(I) qui calcule le I ième nombre de Fibonacci
C
SUBROUTINE F(I)
DIMENSION A(I+1)
A(1)=1; A(2)=1
DO1J=3,I+1
A(J)=A(J-1)+A(J-2)
1 CONTINUE
I=A(I+1)
RETURN
END SUBROUTINE
Go
package main
import(
"fmt"
"math"
)
func fibo(n int) int {
if n < 2 {
return n
}
return fibo(n-2) + fibo(n-1)
}
Haskell
module Main where
import System.Environment
fibo = 1 : 1 : zipWith (+) fibo (tail fibo)
main = do
args <- getArgs
print (fibo !! (read(args!!0)-1))
Java
public class fibo
{
public static void main(String args[])
{
int N = Integer.parseInt(args[0]);
System.out.println(fib(N));
}
public static int fib(int n)
{
if (n < 2) return(n);
return( fib(n-2) + fib(n-1) );
}
}
JavaScript
function fibo(n)
{
if (n < 2) return n
return fibo(n-2) + fibo(n-1)
}
for(var i = 1; i < x ; i++)
{
document.write(i + " = " + fibo(i) + "<br>")
}
Julia
Récursif
fibo(n) = n < 2 ? n : fibo(n-1) + fibo(n-2)
Itératif
function fibo(n)
x,y = (0,1)
for i = 1:n
x,y = (y, x+y)
end
return x
end
for n=1:10
println(fibo(n))
end
Lisp
(defun fibo (x)
"
Calcule le nombre de fibonacci pour x
"
(if (<= x 2)
1
(+ (fibo (- x 2))(fibo (1- x)))))
(loop for i from 1 to x do
(print (fibo i)))
Lua
function fibo(n) if (n < 2) then return(1) end return( fibo(n-2) + fibo(n-1) ) end N = tonumber((arg and arg[1])) or 1 write(fibo(N), "\n")
Oberon
MODULE fibonacci;
(* n premiers nombres de Fibonacci *)
CONST n=151;
VAR Fibs:
ARRAY n+1 OF INTEGER;
i,j : INTEGER;
BEGIN
j:=0;
Fibs[0]:=0;
Fibs[1]:=1;
i:=2;
WHILE i <= n DO
Fibs[i]:= Fibs[i-2] + Fibs[i-1];
i:=i+1;
END;
i:=0;
WHILE i <= n DO
Write(Fibs[i]);
i:=i+1;
END;
END fibonacci.
Objective C
int i, a = 1, b = 0;
int top = 50;
for(i = 2; i < top; i++) {
fibo = a + b;
a = b;
b = fibo;
printf("fibo(%d) %d\n", i, fibo);
}
Ocaml
let rec fib n =
if n < 2 then 1
else fib (n - 2) + fib (n - 1)
let _ =
let n =
try int_of_string Sys.argv.(1)
with Invalid_argument _ -> 1 in
Printf.printf "%d\n" (fib n)
Oz
functor
import System Application
define
fun {Fib N}
case N
of 0 then 1
[] 1 then 1
else {Fib N-2} + {Fib N-1} end
end
in
local A in
[A] = {Application.getArgs plain}
{System.printInfo {Fib {String.toInt A}}}
end
{Application.exit 0}
end
Pascal
Récursif
program fibo;
var
result : longint;
num,i, error: integer;
strnum: string;
function fib(n : integer) : longint;
begin
if n <= 2 then fib := 1
else fib := fib(n-2) + fib(n-1);
end;
begin
if ParamCount = 0 then
begin
writeln('Enter integer:');
readln(strnum);
val(strnum,num,error);
end else
begin
val (ParamStr(1), num, error);
end;
for i := 1 to num do
begin
result:= fib(i);
writeln(i, ' : ', result);
end;
end.
Code source
Perl
Itératif utilisant bigint#! /usr/bin/perl
use bigint;
my ($a, $b) = (0, 1);
for (;;)
{
print "$a\n";
($a, $b) = ($b, $a+$b);
}
Récursif
sub fibo;
sub fibo {$_ [0] < 2 ? $_ [0] : fibo ($_ [0] - 1) + fibo ($_ [0] - 2)}
Itératif
sub fibo
{
my ($n, $a, $b) = (shift, 0, 1);
($a, $b) = ($b, $a + $b) while $n-- > 0;
$a;
}
PHP
Récursif
<?php
function fibo($n)
{
return(($n < 2) ? 1 : fibo($n - 1) + fibo($n - 2));
}
$n = ($argc == 2) ? $argv[1] : 1;
$r = fibo($n);
print "$r\n";
?>
Itératif
function fibonacci($length)
{
for( $l = array(1,1), $i = 2, $x = 0; $i < $length; $i++ )
{
$l[] = $l[$x++] + $l[$x];
}
return $l;
}
for{ $x=0; $x< $fibmax; $x++) echo "fib(" , $x , ") ", fibonacci($x), "\n"
Prolog
Récursiffibo(N, 1) :-, N<2, !. fibo(N, R) :- N1 is N-1, N2 is N-2, fibo(N1, R1),fibo(N2, R2), R is R1 + R2.
Python
Récursif
import sys
def fib(n):
if n < 2:
return n
else:
return fib(n - 1) + fib(n - 2)
def main():
limit = int(sys.argv[1])
print(fib(limit))
main()
Avec générateur
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
Rebol
Fib: func [N] [ return either N < 2 [ n ] [ (Fib N - 2) + (Fib N - 1) ] ] NUM: to-integer to-string system/script/args NUM: either NUM < 1 [ 1 ] [ NUM ] R: Fib NUM write %output.rebol rejoin [ R ]
Rexx
parse arg n
If n < 1 Then Do
n = 1
End
R = fib(n)
say R
exit
fib:
Procedure
parse arg n
if n < 2 return n
return fib(n-2) + fib(n-1)
Ruby
Récursifdef fibo(n) return n if n <= 1 return fibo(n-1) + fibo(n-2) end puts fibo(16)Itératif
def fib(num)
i, j = 0, 1
while i <= num
yield i
i, j = j, i + j
end
end
fib(10) {|i| puts i}
Rust
fn fibo(n: int) -> int {
if (n <= 1) {
ret n;
}
else {
ret fibo(n - 1) + fibo(n - 2);
}
}
print(fmt!("%d ", fibo(10)));
Scala
Récursif
object Fibonacci with Application
{
def fibo(n: Int): Int =
if (n < 2) n
else fibo(n - 1) + fibo(n - 2);
Console.println("fib("+ x +") = " + fib(x));
};
Itératif
object Fibonacci with Application
{
def fibo(n: Int): Int =
if (n < 2) 1
else
{
def iter(x: Int, prev: Int, result: Int): Int =
if (x > n) result
else iter(x + 1, result, prev + result);
iter(3, 1, 2)
};
Console.println("fib("+ x +") = " + fib(x));
};
Scheme
Récursif(define fibo
(lambda (x)
(if (< x 2)
x
(+ (fibo (- x 1)) (fibo (- x 2))))))
Itératif
(define (fibo x)
(define (fibo-iter x a b)
(if (= x 0)
a
(fibo-iter (- x 1) b (+ a b))))
(fibo-iter x 0 1))
Display
(define (fibo-run a b) (display a) (newline) (fibo-run b (+ a b))) (define fibo-run-all (fibo-run 0 1)))
Scriptol
Récursif# Fonction de Fibonacci récursive
constant int fmax = 16
int fib(int n)
if n <= 1 return n
return fib(n - 1) + fib(n - 2)
for int i in 1..fmax // boucle sur un intervalle
print "fib($i)= " , fib(i)
/for
Itératif
int fibonacci(int n)
int u = 0
int v = 1
int t
for int i in 2 .. n
t = u + v
u = v
v = t
/for
return v
for int x in 1..fibmax echo "fib(" , x , ") ", fibonacci(x), "\n"
Smalltalk
^self <= 2
ifTrue: [1]
ifFalse: [(self - 1) fibonacci + (self - 2) fibonacci]
Swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return (fib(n - 1) + fib(n - 2))
}
for x in 10 {
print(fib(x))
}
Tcl
proc fib {n} {
if {$n < 2} {
return $n
}
else {
return [expr {[fib [expr {$n-2}]] + [fib [expr {$n-1}]]}]
}
}
set N [lindex $argv 0]
if {$N < 1} { set N 1 }
puts [fib $N]
TypeScript
function fibo(n : number) : number {
if (n < 2) return n
return fibo(n-2) + fibo(n-1)
}
WebAssembly
(module
(export "fib" (func $fib))
(func $fib (param $n i32) (result i32)
(if (i32.lt_s (get_local $n)(i32.const 2))
(return (i32.const 1)
)
)
(return (i32.add
(call $fib (i32.sub (get_local $n)(i32.const 2)))
(call $fib (i32.sub (get_local $n)(i32.const 1)))
)
)
)
)
Voir aussi
- Le programme "Salut le Monde' dans tous les langages de programmation.
- Le crible d'Eratosthènes en tout langage de programmation.
- Histoire et évolution des langages informatique.
© 2006-2020 Scriptol.fr. Dernière mise à jour 3 janvier 2014.